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Canonical Map

K field
X curve of genus g ≥ 2

Ω(X ) space of regular differentials on X/K
this is a K -vector space of dimension g .

Let ω1, . . . , ωg be a K -basis for Ω(X ).

The canonical map is the map

φ : X → Pg−1, P 7→ (ω1(P) : · · · : ωg (P)).

What does this mean? Let f ∈ K (X ) \ K . Then every differential ω can
be written as ω = hdf where h ∈ K (X ). So I can write ωi = hidf , and
then

φ(P) = (h1(P) : · · · : hg (P)).



Canonical Map for Genus 2 Curves

Consider a genus 2 curve

X : y2 = a6x
6 + · · ·+ a0, ai ∈ K , ∆(f ) 6= 0.

A basis for Ω(X ) is

ω1 =
dx

y
, ω2 =

xdx

y
.

Note that ω2/ω1 = x . Thus

φ : X → P1, P 7→ (1 : x(P)).

Thus φ(X ) = P1.

∴ φ is not an isomorphism but is 2 to 1.



Canonical Map for Genus 3 Hyperelliptic

X : y2 = a8x
8 + · · ·+ a0, ai ∈ K , ∆(f ) 6= 0.

A basis for Ω(X ) is

ω1 =
dx

y
, ω2 =

xdx

y
, ω3 =

x2dx

y
.

φ : X → P2, φ(x , y) = (1 : x : x2).

If we choose coordinates (u1 : u2 : u3) for P2 then the image is the conic

φ(X ) = C : u1u3 = u22 ⊂ P2.

∴ φ : X → φ(X ) is not an isomorphism but it is 2 to 1.



General Hyperelliptic

A hyperelliptic curve of genus g can be written as

X : y2 = a2g+2x
2g+2 + · · ·+ a0, ai ∈ K , ∆(f ) 6= 0.

A basis for Ω(X ) is
dx

y
,
xdx

y
, . . . ,

xg−1dx

y
.

Check that φ : X → φ(X ) ∼= P1 is 2 to 1.



Theorem

Let X be a curve of genus ≥ 2.

If X is hyperelliptic then φ(X ) ∼= P1 and the canonical map
φ : X → φ(X ) is 2 to 1.

If X is non-hyperelliptic then φ : X → Pg−1 is an embedding (so X is
isomorphic to φ(X )). Moreover φ(X ) is a curve of degree 2g − 2.

We focus on those modular curves whose genus is ≥ 2.

Recall the isomorphism

S2(ΓH) ∼= Ω(XH), f (q) 7→ f (q)
dq

q
.

Let f1, . . . , fg be a basis for S2(ΓH).

The canonical map is given by

φ : XH → Pg−1

φ = (f1(q)
dq

q
: · · · : fg (q)

dq

q
) = (f1(q) : · · · : fg (q)).



Example X0(30)

A basis for S2(Γ0(30)) is

f1 = q − q4 − q6 − 2q7 + q9 + O(q10),

f2 = q2 − q4 − q6 − q8 + O(q10),

f3 = q3 + q4 − q5 − q6 − 2q7 − 2q8 + O(q10).

∴ X = X0(30) has genus 3.

By theorem,

either X is hyperelliptic;

or X ∼= φ(X ) is a curve in Pg−1 = P2 which has degree 2g − 2 = 4;
i.e. φ(X ) is a plane quartic curve.

Which is it?



If X is hyperelliptic then φ(X ) is a conic.

(Note in this case that f1(q)dq/q, . . . , f3(q)dq/q and dx/y , xdx/y ,
x2dx/y don’t have to be the same basis for Ω(X ). The two bases are
related by a linear transformation. So φ(X ) might be a different conic
than before.)

φ(X ) = conic iff ∃a1, . . . , a6 (not all zero) such that

a1f
2
1 + a2f

2
2 + a3f

2
3 + a4f1f2 + a5f1f3 + a6f2f3 = 0.

f 21 = q2 − 2q5 − 2q7 − 3q8 + 4q10 + O(q11)

f 22 = q4 − 2q6 − q8 + O(q12)

f 23 = q6 + 2q7 − q8 − 4q9 − 5q10 − 6q11 + q12 + O(q13)

f1f2 = q3 − q5 − q6 − q7 − 3q9 + 2q10 + O(q11)

f1f3 = q4 + q5 − q6 − 2q7 − 3q8 − 2q9 − 2q10 + O(q11)

f2f3 = q5 + q6 − 2q7 − 2q8 − 2q9 − 2q10 + 2q11 + O(q12).



φ(X ) = conic iff ∃a1, . . . , a6 (not all zero) such that

a1f
2
1 + a2f

2
2 + a3f

2
3 + a4f1f2 + a5f1f3 + a6f2f3 = 0.

f 21 = q2 − 2q5 − 2q7 − 3q8 + 4q10 + O(q11)

f 22 = q4 − 2q6 − q8 + O(q12)

f 23 = q6 + 2q7 − q8 − 4q9 − 5q10 − 6q11 + q12 + O(q13)

f1f2 = q3 − q5 − q6 − q7 − 3q9 + 2q10 + O(q11)

f1f3 = q4 + q5 − q6 − 2q7 − 3q8 − 2q9 − 2q10 + O(q11)

f2f3 = q5 + q6 − 2q7 − 2q8 − 2q9 − 2q10 + 2q11 + O(q12).

Coefficient of q2 =⇒ a1 = 0.

Coefficient of q3 =⇒ a4 = 0.

Coefficient of q4, q5, q6 give

a2 + a5 = 0, a5 + a6 = 0, −2a2 + a3 − a5 + a6 = 0



There is only one solution (up to scaling) which is

a2 = 1, a3 = 0, a5 = −1, a6 = 1.

∴ f 22 − f1f3 + f2f3 = 0 + O(q7).

In fact we can check that

f 22 − f1f3 + f2f3 = 0 + O(q100).

Question. Do we know that f 22 − f1f3 + f2f3 = 0 exactly? If so then the
image is the conic

u22 − u1u3 + u2u3 = 0 ⊂ P2,

and X is hyperelliptic.



In fact we can check that

f 22 − f1f3 + f2f3 = 0 + O(q100)

.

Question. Do we know that f 22 − f1f3 + f2f3 = 0 exactly? If so then the
image is the conic

u22 − u1u3 + u2u3 = 0 ⊂ P2,

and X is hyperelliptic.

Theorem (Sturm)

Let Γ be a congruence subgroup of SL2(Z) of index m. Let f ∈ Sk(Γ) and
suppose ordq(f ) > km/12. Then f = 0.



Theorem (Sturm)

Let Γ be a congruence subgroup of SL2(Z) of index m. Let f ∈ Sk(Γ) and
suppose ordq(f ) > km/12. Then f = 0.

Let f = f 22 − f1f3 + f2f3.

f1, f2, f3 are cusp forms for Γ0(30) of weight 2.

∴ f is a cusp form for Γ0(30) of weight k = 4.

[SL2(Z) : Γ0(N)] = N
∏
p|N

(1 + 1/p).

N = 30 =⇒ m = 30(1 + 1/2)(1 + 1/3)(1 + 1/5) = 72 =⇒ km

12
= 36.

Since ordq(f ) ≥ 100 we know from Sturm that f = 0.

∴ X0(30) is hyperelliptic.



X0(45)

Repeat X0(45). A basis for S2(Γ0(45)) is

g1 = q − q4 + O(q10),

g2 = q2 − q5 − 3q8 + O(q10),

g3 = q3 − q6 − q9 + O(q10).

∴ X0(45) has genus 3. Is it hyperelliptic? i.e. Is the canonical image
a conic? Again we look for a1, . . . , a6 such that

a1g
2
1 + a2g

2
2 + a3g

2
3 + a4g1g2 + a5g1g3 + a6g2g3 = 0.

By solving the resulting system of linear equations from the coefficients of
q2, . . . , q10 we find that all the ai = 0.

∴ image is not a conic.

∴ X0(45) is not hyperelliptic, and the image is a plane quartic.



Write down an equation for this plane quartic!

Look at all 10 monomials of degree 4 in g1, g2, g3.

Want a linear combination which is 0.

By solving the system resulting from the coefficients of qj up to q20

we find a unique solution (up to scaling).

This unique solution gives us our degree 4 model:

X0(45) : x30x2 − x20x
2
1 + x0x1x

2
2 − x31x2 − 5x42 ⊂ P2.

Did we need to check up to the Sturm bound? Not this time!

Already proved that X0(45) is not hyperelliptic.

So we know that the canonical image is a quartic.

We solved for this quartic and found only one solution.

So that must be the correct quartic.



Return to X0(30)
Know this is hyperelliptic and so has a model

y2 = h(x), h = a8x
8 + · · ·+ a0.

The model is not unique. If (u, v) is any point on this model, we then we
can change the model to move this point to infinity:

x ′ =
1

x − u
, y ′ =

y

(x − u)4
.

The new model has the form

y ′
2

= v2x ′
8

+ · · · .

If v = 0 (i.e. the original point was a Weierstrass point) then we would
end up with y ′2 = degree 7 but otherwise it is y ′2 = degree 8.

Now the infinity cusp c∞ is a point on X0(30). Let’s move c∞ to infinity
on the hyperelliptic model. Question: Do we obtain a degree 7 model
or a degree 8 model?



Exercise.

(i) Let
X : y2 = a2g+2x

2g+2 + · · ·+ a0

be a curve of genus g where a2g+2 6= 0. Let ∞+ be one of the two
points at infinity. Show that

ord∞+

(
dx

y

)
= g − 1, ord∞+

(
xdx

y

)
= g − 2, . . . ,

(ii) Let
X : y2 = a2g+1x

2g+1 + · · ·+ a0

be a curve of genus g (here necessarily a2g+1 6= 0 otherwise the genus
would be smaller than g). Let ∞ be the unique point at infinity.
Show that

ord∞

(
dx

y

)
= 2(g − 1), ord∞

(
xdx

y

)
= 2(g − 2), . . . ,



Recall that basis for S2(Γ0(30)) is

f1 = q − q4 − q6 − 2q7 + q9 + O(q10),

f2 = q2 − q4 − q6 − q8 + O(q10),

f3 = q3 + q4 − q5 − q6 − 2q7 − 2q8 + O(q10).

ordc∞

(
f1(q)

dq

q

)
= 0, ordc∞

(
f2(q)

dq

q

)
= 1, ordc∞

(
f3(q)

dq

q

)
= 2.

∴ ordc∞(ω) ≤ 2, ∀ω ∈ Ω(X ) \ {0}.

But if c∞ =∞ on y2 = degree 7 model, then there is some ω with
ordc∞(ω) = 4.

∴ When we move c∞ to ∞ we get a y2 = degree 8 model.



X : y2 = a8x
8 + a7x

7 + · · ·+ a0, a8 6= 0, c∞ =∞+.

ordc∞

(
f1(q)

dq

q

)
= 0, ordc∞

(
f2(q)

dq

q

)
= 1, ordc∞

(
f3(q)

dq

q

)
= 2.

ord∞+

(
dx

y

)
= 2, ord∞+

(
x
dx

y

)
= 1, ord∞+

(
x2

dx

y

)
= 0.

From the valutions

dx

y
= α3 · f3(q)

dq

q
,

xdx

y
= β2

f2(q)dq

q
+ β3

f3(q)dq

q
,

x2dx

y
= γ1

f1(q)dq

q
+ γ2

f2(q)dq

q
+ γ3

f3(q)dq

q
,

where α3, β2 and γ1 6= 0.



X : y2 = a8x
8 + a7x

7 + · · ·+ a0, a8 6= 0, c∞ =∞+.

dx

y
= α3 · f3(q)

dq

q
,

xdx

y
= β2

f2(q)dq

q
+ β3

f3(q)dq

q
,

x2dx

y
= γ1

f1(q)dq

q
+ γ2

f2(q)dq

q
+ γ3

f3(q)dq

q
,

The change of hyperelliptic model

x 7→ rx , y 7→ sy

preserve points at infinity but has the effect

dx

y
7→ (r/s)

dx

y
,

xdx

y
7→ (r2/s)

xdx

y
, . . .

Thus we can make α3 = 1 and β2 = 1.



X : y2 = a8x
8 + a7x

7 + · · ·+ a0, a8 6= 0, c∞ =∞+.

dx

y
= f3(q)

dq

q
,

xdx

y
=

f2(q)dq

q
+ β3

f3(q)dq

q
,

x2dx

y
= γ1

f1(q)dq

q
+ γ2

f2(q)dq

q
+ γ3

f3(q)dq

q
,

The change of model

x 7→ x + t, y 7→ y .

preserves the points at infinity and has the effect

dx

y
7→ dx

y
,

xdx

y
7→ xdx

y
+ t

dx

y
.

So we can suppose β3 = 0. i.e.

dx

y
= f3(q)

dq

q
,

xdx

y
= f2(q)

dq

q
.



X : y2 = a8x
8 + a7x

7 + · · ·+ a0, a8 6= 0, c∞ =∞+.

dx

y
= f3(q)

dq

q
,

xdx

y
= f2(q)

dq

q
.

x = f2(q)/f3(q) =
1

q
−1+q−q2+2q3−2q4+2q5−3q6+5q7−5q8+5q9+· · · .

y =
dx

dq
· q

f3(q)
= − 1

q4
+

1

q3
− 1

q2
−1

q
+5−15q+29q2−60q3+118q4−210q5+

346q6 − 573q7 + 929q8 − 1454q9 + · · · .

By comparing the coefficients of q−8 on both sides we see that a8 = 1.



X : y2 = x8 + a7x
7 + · · ·+ a0, c∞ =∞+.

x =
1

q
− 1 + q − q2 + 2q3 − 2q4 + 2q5 − 3q6 + 5q7 − 5q8 + 5q9 + · · · .

y2 − x8 =
6

q7
− 33

q6
+ · · ·

so a7 = 6. Also

y2 − x8 − 6x7 =
9

q6
− 48

q5
+ · · ·

so a6 = 9. Continuing in this fashion we arrive at

y2 − x8 − 6x7 − 9x6 − 6x5 + 4x4 + 6x3 − 9x2 + 6x − 1 = O(q100).

Therefore, a model for X0(30) is

X0(30) : y2 = x8 + 6x7 + 9x6 + 6x5 − 4x4 − 6x3 + 9x2 − 6x + 1.



The Modular Curve XH

H ≤ GL2(Z/NZ)

An isomorphism α : E [N]→ (Z/NZ)2 a level N structure on E .

A level N-structure is same as choice of basis for E [N]: P = α−1(e1),
Q = α−1(e2) where e1 = (1, 0), e2 = (0, 1).

We call pairs (E1, α1) and (E2, α2) H-isomorphic, and write

(E1, α1) ∼H (E2, α2)

if there is an isom φ : E1 → E2 and an element h ∈ H such that

α1 = h ◦ α2 ◦ φ (think of h ∈ H as h : (Z/NZ)2 ∼= (Z/NZ)2).



Suppose det(H) = (Z/NZ)∗. Then there is a modular curve XH defined
over Spec(Z[1/N]) such that . . .

K be a perfect field, char(K ) = 0, or char(K ) - N.

A point Q ∈ YH(K ) represents class [(E , α)]H where E/K , α a mod
N level structure;

we identify Q = [(E , α)]H .

Lemma

Let Q = [(E , α)]H ∈ YH(K ). Let E ′/K be an elliptic curve that is
isomorphic to E . Then there is some isomorphism α′ : E ′[N]→ (Z/NZ)2

such that Q = [(E ′, α′)]H .

i.e. I can replace E by any isomorphic E ′ and obtain the same point
Q ∈ YH provided I suitably choose the mod N level structure on E ′.



Galois action and rationality

GK acts on pairs (E , α) (E , α)σ := (Eσ, α ◦ σ−1).

Action is compatible with action of GK on YH(K ):

Q = [(E , α)]H =⇒ Qσ = [(Eσ, α ◦ σ−1)]H .

Lemma

Let Q ∈ YH(K ). Then Q ∈ YH(K ) iff Q = [(E , α)]H for some E/K ,

α : E [N]
∼=−→ (Z/NZ)2 such that for all σ ∈ GK , there is an φσ ∈ AutK (E )

and hσ ∈ H satisfying

α = hσ ◦ α ◦ σ−1 ◦ φσ. (1)



The case −I /∈ H

Theorem

Suppose det(H) = (Z/NZ)∗ and −I ∈ H.

(i) Every Q ∈ YH(K ) is supported on some E/K (i.e. ∃E/K and

α : E [N]
∼=−→ (Z/NZ)2 such that Q = [(E , α)]H .

(ii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, then Q = [(E , α)]H such that E is
defined over K and ρE ,N(GK ) ⊂ H (up to conjugation). Conversely, if
there is E is defined over K and ρE ,N(GK ) ⊂ H (up to conjugation)
then [(E , α)] ∈ YH(K ) for a suitable α.

(iii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, and Q = [(E , α)]H as above, then
Q = [(E ′, α′)] for any quadratic twist E ′/K defined over K , and for
suitable α′.



Theorem

Suppose det(H) = (Z/NZ)∗ and −I ∈ H.

(ii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, then Q = [(E , α)]H such that E is
defined over K and ρE ,N(GK ) ⊂ H (up to conjugation). Conversely, if
there is E is defined over K and ρE ,N(GK ) ⊂ H (up to conjugation)
then [(E , α)] ∈ YH(K ) for a suitable α.

Some details for (ii). Note that j(Q) = j(E ). As this 6= 0, 1728, the
automorphism group Aut(E ) = {1,−1}. Thus φσ = ±1 and in particular
commutes with all other maps. But

α = hσ ◦ α ◦ σ−1 ◦ φσ =⇒ α ◦ σ = (φσhσ) ◦ α.

This can be rewritten as

ρE ,N(σ) = φσhσ

once we have taken α−1(1, 0), α−1(0, 1) as basis for E [N]. Note that
φσhσ = ±hσ ∈ H. Thus ρE ,N(GK ) ⊆ H as required.



The case −I /∈ H

Theorem

Suppose det(H) = (Z/NZ)∗ and −I /∈ H.

(i) Every Q ∈ YH(K ) is supported on some E/K (i.e. ∃E/K and

α : E [N]
∼=−→ (Z/NZ)2 such that Q = [(E , α)]H .

(ii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, then Q = [(E , α)]H such that E is
defined over K and ρE ,N(GK ) ⊂ H (up to conjugation). Conversely, if
there is E is defined over K and ρE ,N(GK ) ⊂ H (up to conjugation)
then [(E , α)] ∈ YH(K ) for a suitable α.

(iii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, and Q = [(E , α)]H as above, then
E is unique.



Theorem

Suppose det(H) = (Z/NZ)∗ and −I /∈ H.

(ii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, then Q = [(E , α)]H such that E is
defined over K and ρE ,N(GK ) ⊂ H (up to conjugation). Conversely, if
there is E is defined over K and ρE ,N(GK ) ⊂ H (up to conjugation)
then [(E , α)] ∈ YH(K ) for a suitable α.

(iii) If Q ∈ YH(K ) and j(Q) 6= 0, 1728, and Q = [(E , α)]H as above, then
E is unique.

Some details. As before φσ ∈ {±1} and ρE ,N(σ) = φσhσ.
The map ψ : σ 7→ φσ is a quadratic character.

If ψ is trivial then ρE ,N(GK ) ⊂ H. Otherwise ψ is a quadratic character,

and by Galois theory its kernel fixes a quadratic extension K (
√
d) of K .

Now ρEd ,N = ψ · ρE ,N , and thus ρEd ,N(σ) = hσ ∈ H.

Replacing E by Ed and adjusting the level structure α gives Q = [(E , α)]H
with E defined over K and ρE ,N(GK ) ⊂ H.


