Explicit Arithmetic of Modular Curves Lecture IV: Equations for Modular Curves

Samir Siksek (Warwick/IHÉS/IHP)

20 June 2019

Canonical Map

K field
$X \quad$ curve of genus $g \geq 2$
$\Omega(X)$ space of regular differentials on X / K this is a K-vector space of dimension g.

Let $\omega_{1}, \ldots, \omega_{g}$ be a K-basis for $\Omega(X)$.
The canonical map is the map

$$
\phi: X \rightarrow \mathbb{P}^{g-1}, \quad P \mapsto\left(\omega_{1}(P): \cdots: \omega_{g}(P)\right) .
$$

What does this mean? Let $f \in K(X) \backslash K$. Then every differential ω can be written as $\omega=h d f$ where $h \in K(X)$. So I can write $\omega_{i}=h_{i} d f$, and then

$$
\phi(P)=\left(h_{1}(P): \cdots: h_{g}(P)\right) .
$$

Canonical Map for Genus 2 Curves

Consider a genus 2 curve

$$
X: y^{2}=a_{6} x^{6}+\cdots+a_{0}, \quad a_{i} \in K, \quad \Delta(f) \neq 0
$$

A basis for $\Omega(X)$ is

$$
\omega_{1}=\frac{d x}{y}, \quad \omega_{2}=\frac{x d x}{y}
$$

Note that $\omega_{2} / \omega_{1}=x$. Thus

$$
\phi: X \rightarrow \mathbb{P}^{1}, \quad P \mapsto(1: x(P))
$$

Thus $\phi(X)=\mathbb{P}^{1}$.
$\therefore \quad \phi$ is not an isomorphism but is 2 to 1 .

Canonical Map for Genus 3 Hyperelliptic

$$
x: y^{2}=a_{8} x^{8}+\cdots+a_{0}, \quad a_{i} \in K, \quad \Delta(f) \neq 0 .
$$

A basis for $\Omega(X)$ is

$$
\begin{gathered}
\omega_{1}=\frac{d x}{y}, \quad \omega_{2}=\frac{x d x}{y}, \quad \omega_{3}=\frac{x^{2} d x}{y} . \\
\phi: x \rightarrow \mathbb{P}^{2}, \quad \phi(x, y)=\left(1: x: x^{2}\right) .
\end{gathered}
$$

If we choose coordinates $\left(u_{1}: u_{2}: u_{3}\right)$ for \mathbb{P}^{2} then the image is the conic

$$
\phi(X)=C: u_{1} u_{3}=u_{2}^{2} \subset \mathbb{P}^{2} .
$$

$\therefore \quad \phi: X \rightarrow \phi(X)$ is not an isomorphism but it is 2 to 1 .

General Hyperelliptic

A hyperelliptic curve of genus g can be written as

$$
X: y^{2}=a_{2 g+2} x^{2 g+2}+\cdots+a_{0}, \quad a_{i} \in K, \quad \Delta(f) \neq 0
$$

A basis for $\Omega(X)$ is

$$
\frac{d x}{y}, \frac{x d x}{y}, \ldots, \frac{x^{g-1} d x}{y}
$$

Check that $\phi: X \rightarrow \phi(X) \cong \mathbb{P}^{1}$ is 2 to 1 .

Theorem

Let X be a curve of genus ≥ 2.

- If X is hyperelliptic then $\phi(X) \cong \mathbb{P}^{1}$ and the canonical map $\phi: X \rightarrow \phi(X)$ is 2 to 1 .
- If X is non-hyperelliptic then $\phi: X \rightarrow \mathbb{P}^{g-1}$ is an embedding (so X is isomorphic to $\phi(X)$). Moreover $\phi(X)$ is a curve of degree $2 g-2$.

We focus on those modular curves whose genus is ≥ 2.
Recall the isomorphism

$$
S_{2}\left(\Gamma_{H}\right) \cong \Omega\left(X_{H}\right), \quad f(q) \mapsto f(q) \frac{d q}{q}
$$

Let f_{1}, \ldots, f_{g} be a basis for $S_{2}\left(\Gamma_{H}\right)$.
The canonical map is given by

$$
\begin{aligned}
& \phi: X_{H} \rightarrow \mathbb{P}^{g-1} \\
& \phi=\left(f_{1}(q) \frac{d q}{q}: \cdots: f_{g}(q) \frac{d q}{q}\right)=\left(f_{1}(q): \cdots: f_{g}(q)\right)
\end{aligned}
$$

Example $X_{0}(30)$

A basis for $S_{2}\left(\Gamma_{0}(30)\right)$ is

$$
\begin{aligned}
& f_{1}=q-q^{4}-q^{6}-2 q^{7}+q^{9}+O\left(q^{10}\right) \\
& f_{2}=q^{2}-q^{4}-q^{6}-q^{8}+O\left(q^{10}\right) \\
& f_{3}=q^{3}+q^{4}-q^{5}-q^{6}-2 q^{7}-2 q^{8}+O\left(q^{10}\right)
\end{aligned}
$$

$\therefore X=X_{0}(30)$ has genus 3.
By theorem,

- either X is hyperelliptic;
- or $X \cong \phi(X)$ is a curve in $\mathbb{P}^{g-1}=\mathbb{P}^{2}$ which has degree $2 g-2=4$; i.e. $\phi(X)$ is a plane quartic curve.

Which is it?

If X is hyperelliptic then $\phi(X)$ is a conic.
(Note in this case that $f_{1}(q) d q / q, \ldots, f_{3}(q) d q / q$ and $d x / y, x d x / y$, $x^{2} d x / y$ don't have to be the same basis for $\Omega(X)$. The two bases are related by a linear transformation. So $\phi(X)$ might be a different conic than before.)
$\phi(X)=$ conic iff $\exists a_{1}, \ldots, a_{6}$ (not all zero) such that

$$
\begin{aligned}
& a_{1} f_{1}^{2}+a_{2} f_{2}^{2}+a_{3} f_{3}^{2}+a_{4} f_{1} f_{2}+a_{5} f_{1} f_{3}+a_{6} f_{2} f_{3}=0 . \\
& f_{1}^{2}=q^{2}-2 q^{5}-2 q^{7}-3 q^{8}+4 q^{10}+O\left(q^{11}\right) \\
& f_{2}^{2}=q^{4}-2 q^{6}-q^{8}+O\left(q^{12}\right) \\
& f_{3}^{2}=q^{6}+2 q^{7}-q^{8}-4 q^{9}-5 q^{10}-6 q^{11}+q^{12}+O\left(q^{13}\right) \\
& f_{1} f_{2}=q^{3}-q^{5}-q^{6}-q^{7}-3 q^{9}+2 q^{10}+O\left(q^{11}\right) \\
& f_{1} f_{3}=q^{4}+q^{5}-q^{6}-2 q^{7}-3 q^{8}-2 q^{9}-2 q^{10}+O\left(q^{11}\right) \\
& f_{2} f_{3}=q^{5}+q^{6}-2 q^{7}-2 q^{8}-2 q^{9}-2 q^{10}+2 q^{11}+O\left(q^{12}\right)
\end{aligned}
$$

$\phi(X)=$ conic iff $\exists a_{1}, \ldots, a_{6}$ (not all zero) such that

$$
\begin{aligned}
& a_{1} f_{1}^{2}+a_{2} f_{2}^{2}+a_{3} f_{3}^{2}+a_{4} f_{1} f_{2}+a_{5} f_{1} f_{3}+a_{6} f_{2} f_{3}=0 . \\
& f_{1}^{2}=q^{2}-2 q^{5}-2 q^{7}-3 q^{8}+4 q^{10}+O\left(q^{11}\right) \\
& f_{2}^{2}=q^{4}-2 q^{6}-q^{8}+O\left(q^{12}\right) \\
& f_{3}^{2}=q^{6}+2 q^{7}-q^{8}-4 q^{9}-5 q^{10}-6 q^{11}+q^{12}+O\left(q^{13}\right) \\
& f_{1} f_{2}=q^{3}-q^{5}-q^{6}-q^{7}-3 q^{9}+2 q^{10}+O\left(q^{11}\right) \\
& f_{1} f_{3}=q^{4}+q^{5}-q^{6}-2 q^{7}-3 q^{8}-2 q^{9}-2 q^{10}+O\left(q^{11}\right) \\
& f_{2} f_{3}=q^{5}+q^{6}-2 q^{7}-2 q^{8}-2 q^{9}-2 q^{10}+2 q^{11}+O\left(q^{12}\right) .
\end{aligned}
$$

- Coefficient of $q^{2} \Longrightarrow a_{1}=0$.
- Coefficient of $q^{3} \Longrightarrow a_{4}=0$.
- Coefficient of q^{4}, q^{5}, q^{6} give

$$
a_{2}+a_{5}=0, \quad a_{5}+a_{6}=0, \quad-2 a_{2}+a_{3}-a_{5}+a_{6}=0
$$

There is only one solution (up to scaling) which is

$$
\begin{gathered}
a_{2}=1, \quad a_{3}=0, \quad a_{5}=-1, \quad a_{6}=1 . \\
\therefore \quad f_{2}^{2}-f_{1} f_{3}+f_{2} f_{3}=0+O\left(q^{7}\right) .
\end{gathered}
$$

In fact we can check that

$$
f_{2}^{2}-f_{1} f_{3}+f_{2} f_{3}=0+O\left(q^{100}\right)
$$

Question. Do we know that $f_{2}^{2}-f_{1} f_{3}+f_{2} f_{3}=0$ exactly? If so then the image is the conic

$$
u_{2}^{2}-u_{1} u_{3}+u_{2} u_{3}=0 \quad \subset \mathbb{P}^{2}
$$

and X is hyperelliptic.

In fact we can check that

$$
f_{2}^{2}-f_{1} f_{3}+f_{2} f_{3}=0+O\left(q^{100}\right)
$$

Question. Do we know that $f_{2}^{2}-f_{1} f_{3}+f_{2} f_{3}=0$ exactly? If so then the image is the conic

$$
u_{2}^{2}-u_{1} u_{3}+u_{2} u_{3}=0 \quad \subset \mathbb{P}^{2}
$$

and X is hyperelliptic.

Theorem (Sturm)
Let Γ be a congruence subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ of index m. Let $f \in S_{k}(\Gamma)$ and suppose $\operatorname{ord}_{q}(f)>k m / 12$. Then $f=0$.

Theorem (Sturm)

Let Γ be a congruence subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ of index m. Let $f \in S_{k}(\Gamma)$ and suppose $\operatorname{ord}_{q}(f)>k m / 12$. Then $f=0$.

Let $f=f_{2}^{2}-f_{1} f_{3}+f_{2} f_{3}$.
f_{1}, f_{2}, f_{3} are cusp forms for $\Gamma_{0}(30)$ of weight 2.
$\therefore f$ is a cusp form for $\Gamma_{0}(30)$ of weight $k=4$.

$$
\begin{gathered}
{\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]=N \prod_{p \mid N}(1+1 / p)} \\
N=30 \Longrightarrow m=30(1+1 / 2)(1+1 / 3)(1+1 / 5)=72 \Longrightarrow \frac{k m}{12}=36
\end{gathered}
$$

Since $\operatorname{ord}_{q}(f) \geq 100$ we know from Sturm that $f=0$.
$\therefore X_{0}(30)$ is hyperelliptic.

$X_{0}(45)$

Repeat $X_{0}(45)$. A basis for $S_{2}\left(\Gamma_{0}(45)\right)$ is

$$
\begin{aligned}
& g_{1}=q-q^{4}+O\left(q^{10}\right) \\
& g_{2}=q^{2}-q^{5}-3 q^{8}+O\left(q^{10}\right), \\
& g_{3}=q^{3}-q^{6}-q^{9}+O\left(q^{10}\right)
\end{aligned}
$$

$\therefore X_{0}(45)$ has genus 3 . Is it hyperelliptic? i.e. Is the canonical image a conic? Again we look for a_{1}, \ldots, a_{6} such that

$$
a_{1} g_{1}^{2}+a_{2} g_{2}^{2}+a_{3} g_{3}^{2}+a_{4} g_{1} g_{2}+a_{5} g_{1} g_{3}+a_{6} g_{2} g_{3}=0
$$

By solving the resulting system of linear equations from the coefficients of q^{2}, \ldots, q^{10} we find that all the $a_{i}=0$.
\therefore image is not a conic.
$\therefore X_{0}(45)$ is not hyperelliptic, and the image is a plane quartic.

Write down an equation for this plane quartic!

- Look at all 10 monomials of degree 4 in g_{1}, g_{2}, g_{3}.
- Want a linear combination which is 0 .
- By solving the system resulting from the coefficients of q^{j} up to q^{20} we find a unique solution (up to scaling).

This unique solution gives us our degree 4 model:

$$
x_{0}(45): x_{0}^{3} x_{2}-x_{0}^{2} x_{1}^{2}+x_{0} x_{1} x_{2}^{2}-x_{1}^{3} x_{2}-5 x_{2}^{4} \quad \subset \mathbb{P}^{2}
$$

Did we need to check up to the Sturm bound? Not this time!

- Already proved that $X_{0}(45)$ is not hyperelliptic.
- So we know that the canonical image is a quartic.
- We solved for this quartic and found only one solution.
- So that must be the correct quartic.

Return to $X_{0}(30)$

Know this is hyperelliptic and so has a model

$$
y^{2}=h(x), \quad h=a_{8} x^{8}+\cdots+a_{0}
$$

The model is not unique. If (u, v) is any point on this model, we then we can change the model to move this point to infinity:

$$
x^{\prime}=\frac{1}{x-u}, \quad y^{\prime}=\frac{y}{(x-u)^{4}}
$$

The new model has the form

$$
y^{\prime 2}=v^{2} x^{\prime 8}+\cdots
$$

If $v=0$ (i.e. the original point was a Weierstrass point) then we would end up with $y^{\prime 2}=$ degree 7 but otherwise it is $y^{\prime 2}=$ degree 8 .

Now the infinity cusp c_{∞} is a point on $X_{0}(30)$. Let's move c_{∞} to infinity on the hyperelliptic model. Question: Do we obtain a degree 7 model or a degree 8 model?

Exercise.

(i) Let

$$
X: y^{2}=a_{2 g+2} x^{2 g+2}+\cdots+a_{0}
$$

be a curve of genus g where $a_{2 g+2} \neq 0$. Let ∞_{+}be one of the two points at infinity. Show that

$$
\operatorname{ord}_{\infty_{+}}\left(\frac{d x}{y}\right)=g-1, \quad \operatorname{ord}_{\infty_{+}}\left(\frac{x d x}{y}\right)=g-2, \ldots
$$

(ii) Let

$$
X: y^{2}=a_{2 g+1} x^{2 g+1}+\cdots+a_{0}
$$

be a curve of genus g (here necessarily $a_{2 g+1} \neq 0$ otherwise the genus would be smaller than g). Let ∞ be the unique point at infinity. Show that

$$
\operatorname{ord}_{\infty}\left(\frac{d x}{y}\right)=2(g-1), \quad \operatorname{ord}_{\infty}\left(\frac{x d x}{y}\right)=2(g-2), \ldots
$$

Recall that basis for $S_{2}\left(\Gamma_{0}(30)\right)$ is

$$
\begin{aligned}
& f_{1}=q-q^{4}-q^{6}-2 q^{7}+q^{9}+O\left(q^{10}\right) \\
& f_{2}=q^{2}-q^{4}-q^{6}-q^{8}+O\left(q^{10}\right) \\
& f_{3}=q^{3}+q^{4}-q^{5}-q^{6}-2 q^{7}-2 q^{8}+O\left(q^{10}\right) \\
& \operatorname{ord}_{c_{\infty}}\left(f_{1}(q) \frac{d q}{q}\right)=0, \quad \operatorname{ord}_{c_{\infty}}\left(f_{2}(q) \frac{d q}{q}\right)=1, \quad \operatorname{ord}_{c_{\infty}}\left(f_{3}(q) \frac{d q}{q}\right)=2 . \\
& \therefore \quad \operatorname{ord}_{c_{\infty}}(\omega) \leq 2, \quad \forall \omega \in \Omega(X) \backslash\{0\} .
\end{aligned}
$$

But if $c_{\infty}=\infty$ on $y^{2}=$ degree 7 model, then there is some ω with $\operatorname{ord}_{c_{\infty}}(\omega)=4$.
\therefore When we move c_{∞} to ∞ we get a $y^{2}=$ degree 8 model.

$$
x: y^{2}=a_{8} x^{8}+a_{7} x^{7}+\cdots+a_{0}, \quad a_{8} \neq 0, \quad c_{\infty}=\infty_{+} .
$$

$\operatorname{ord}_{c_{\infty}}\left(f_{1}(q) \frac{d q}{q}\right)=0, \quad \operatorname{ord}_{c_{\infty}}\left(f_{2}(q) \frac{d q}{q}\right)=1, \quad \operatorname{ord}_{c_{\infty}}\left(f_{3}(q) \frac{d q}{q}\right)=2$.

$$
\operatorname{ord}_{\infty_{+}}\left(\frac{d x}{y}\right)=2, \quad \operatorname{ord}_{\infty_{+}}\left(x \frac{d x}{y}\right)=1, \quad \operatorname{ord}_{\infty_{+}}\left(x^{2} \frac{d x}{y}\right)=0 .
$$

From the valutions

$$
\begin{aligned}
\frac{d x}{y} & =\alpha_{3} \cdot f_{3}(q) \frac{d q}{q}, \\
\frac{x d x}{y} & =\beta_{2} \frac{f_{2}(q) d q}{q}+\beta_{3} \frac{f_{3}(q) d q}{q}, \\
\frac{x^{2} d x}{y} & =\gamma_{1} \frac{f_{1}(q) d q}{q}+\gamma_{2} \frac{f_{2}(q) d q}{q}+\gamma_{3} \frac{f_{3}(q) d q}{q},
\end{aligned}
$$

where α_{3}, β_{2} and $\gamma_{1} \neq 0$.

$$
\begin{aligned}
x: y^{2}=a_{8} x^{8} & +a_{7} x^{7}+\cdots+a_{0}, \quad a_{8} \neq 0, \quad c_{\infty}=\infty_{+} . \\
\frac{d x}{y} & =\alpha_{3} \cdot f_{3}(q) \frac{d q}{q}, \\
\frac{x d x}{y} & =\beta_{2} \frac{f_{2}(q) d q}{q}+\beta_{3} \frac{f_{3}(q) d q}{q}, \\
\frac{x^{2} d x}{y} & =\gamma_{1} \frac{f_{1}(q) d q}{q}+\gamma_{2} \frac{f_{2}(q) d q}{q}+\gamma_{3} \frac{f_{3}(q) d q}{q},
\end{aligned}
$$

The change of hyperelliptic model

$$
x \mapsto r x, \quad y \mapsto s y
$$

preserve points at infinity but has the effect

$$
\frac{d x}{y} \mapsto(r / s) \frac{d x}{y}, \quad \frac{x d x}{y} \mapsto\left(r^{2} / s\right) \frac{x d x}{y}
$$

Thus we can make $\alpha_{3}=1$ and $\beta_{2}=1$.

$$
\begin{aligned}
& X: y^{2}=a_{8} x^{8}+a_{7} x^{7}+\cdots+a_{0}, \quad a_{8} \neq 0, \quad c_{\infty}=\infty_{+} . \\
& \frac{d x}{y}=f_{3}(q) \frac{d q}{q}, \\
& \frac{x d x}{y}=\frac{f_{2}(q) d q}{q}+\beta_{3} \frac{f_{3}(q) d q}{q}, \\
& \frac{x^{2} d x}{y}=\gamma_{1} \frac{f_{1}(q) d q}{q}+\gamma_{2} \frac{f_{2}(q) d q}{q}+\gamma_{3} \frac{f_{3}(q) d q}{q}
\end{aligned}
$$

The change of model

$$
x \mapsto x+t, \quad y \mapsto y
$$

preserves the points at infinity and has the effect

$$
\frac{d x}{y} \mapsto \frac{d x}{y}, \quad \frac{x d x}{y} \mapsto \frac{x d x}{y}+t \frac{d x}{y} .
$$

So we can suppose $\beta_{3}=0$. i.e.

$$
\frac{d x}{y}=f_{3}(q) \frac{d q}{q}, \quad \frac{x d x}{y}=f_{2}(q) \frac{d q}{q} .
$$

$$
\begin{gathered}
x: y^{2}=a_{8} x^{8}+a_{7} x^{7}+\cdots+a_{0}, \quad a_{8} \neq 0, \quad c_{\infty}=\infty+. \\
\frac{d x}{y}=f_{3}(q) \frac{d q}{q}, \quad \frac{x d x}{y}=f_{2}(q) \frac{d q}{q} . \\
x=f_{2}(q) / f_{3}(q)=\frac{1}{q}-1+q-q^{2}+2 q^{3}-2 q^{4}+2 q^{5}-3 q^{6}+5 q^{7}-5 q^{8}+5 q^{9}+\cdots . \\
y=\frac{d x}{d q} \cdot \frac{q}{f_{3}(q)}=-\frac{1}{q^{4}}+\frac{1}{q^{3}}-\frac{1}{q^{2}}-\frac{1}{q}+5-15 q+29 q^{2}-60 q^{3}+118 q^{4}-210 q^{5}+ \\
346 q^{6}-573 q^{7}+929 q^{8}-1454 q^{9}+\cdots .
\end{gathered}
$$

By comparing the coefficients of q^{-8} on both sides we see that $a_{8}=1$.

$$
X: y^{2}=x^{8}+a_{7} x^{7}+\cdots+a_{0}, \quad c_{\infty}=\infty_{+}
$$

$$
x=\frac{1}{q}-1+q-q^{2}+2 q^{3}-2 q^{4}+2 q^{5}-3 q^{6}+5 q^{7}-5 q^{8}+5 q^{9}+\cdots
$$

$$
y^{2}-x^{8}=\frac{6}{q^{7}}-\frac{33}{q^{6}}+\cdots
$$

so $a_{7}=6$. Also

$$
y^{2}-x^{8}-6 x^{7}=\frac{9}{q^{6}}-\frac{48}{q^{5}}+\cdots
$$

so $a_{6}=9$. Continuing in this fashion we arrive at

$$
y^{2}-x^{8}-6 x^{7}-9 x^{6}-6 x^{5}+4 x^{4}+6 x^{3}-9 x^{2}+6 x-1=O\left(q^{100}\right)
$$

Therefore, a model for $X_{0}(30)$ is

$$
X_{0}(30): y^{2}=x^{8}+6 x^{7}+9 x^{6}+6 x^{5}-4 x^{4}-6 x^{3}+9 x^{2}-6 x+1
$$

The Modular Curve X_{H}

$H \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$

- An isomorphism $\alpha: E[N] \rightarrow(\mathbb{Z} / N \mathbb{Z})^{2}$ a level N structure on E.
- A level N-structure is same as choice of basis for $E[N]: P=\alpha^{-1}\left(e_{1}\right)$, $Q=\alpha^{-1}\left(e_{2}\right)$ where $e_{1}=(1,0), e_{2}=(0,1)$.
- We call pairs $\left(E_{1}, \alpha_{1}\right)$ and $\left(E_{2}, \alpha_{2}\right) H$-isomorphic, and write

$$
\left(E_{1}, \alpha_{1}\right) \sim_{H}\left(E_{2}, \alpha_{2}\right)
$$

if there is an isom $\phi: E_{1} \rightarrow E_{2}$ and an element $h \in H$ such that

$$
\alpha_{1}=h \circ \alpha_{2} \circ \phi \quad\left(\text { think of } h \in H \text { as } h:(\mathbb{Z} / N \mathbb{Z})^{2} \cong(\mathbb{Z} / N \mathbb{Z})^{2}\right)
$$

Suppose $\operatorname{det}(H)=(\mathbb{Z} / N \mathbb{Z})^{*}$. Then there is a modular curve X_{H} defined over $\operatorname{Spec}(\mathbb{Z}[1 / N])$ such that \ldots
K be a perfect field, $\operatorname{char}(K)=0$, or $\operatorname{char}(K) \nmid N$.

- A point $Q \in Y_{H}(\bar{K})$ represents class $[(E, \alpha)]_{H}$ where $E / \bar{K}, \alpha \operatorname{a~mod}$ N level structure;
- we identify $Q=[(E, \alpha)]_{H}$.

Lemma

Let $Q=[(E, \alpha)]_{H} \in Y_{H}(\bar{K})$. Let E^{\prime} / \bar{K} be an elliptic curve that is isomorphic to E. Then there is some isomorphism $\alpha^{\prime}: E^{\prime}[N] \rightarrow(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $Q=\left[\left(E^{\prime}, \alpha^{\prime}\right)\right]_{H}$.
i.e. I can replace E by any isomorphic E^{\prime} and obtain the same point $Q \in Y_{H}$ provided I suitably choose the mod N level structure on E^{\prime}.

Galois action and rationality

$$
G_{K} \text { acts on pairs }(E, \alpha) \quad(E, \alpha)^{\sigma}:=\left(E^{\sigma}, \alpha \circ \sigma^{-1}\right) .
$$

Action is compatible with action of G_{K} on $Y_{H}(\bar{K})$:

$$
Q=[(E, \alpha)]_{H} \Longrightarrow Q^{\sigma}=\left[\left(E^{\sigma}, \alpha \circ \sigma^{-1}\right)\right]_{H} .
$$

Lemma

Let $Q \in Y_{H}(\bar{K})$. Then $Q \in Y_{H}(K)$ iff $Q=[(E, \alpha)]_{H}$ for some E / K, $\alpha: E[N] \stackrel{\cong}{\Rightarrow}(\mathbb{Z} / N \mathbb{Z})^{2}$ such that for all $\sigma \in G_{K}$, there is an $\phi_{\sigma} \in \operatorname{Aut}_{\bar{K}}(E)$ and $h_{\sigma} \in H$ satisfying

$$
\begin{equation*}
\alpha=h_{\sigma} \circ \alpha \circ \sigma^{-1} \circ \phi_{\sigma} . \tag{1}
\end{equation*}
$$

The case $-I \notin H$

Theorem

Suppose $\operatorname{det}(H)=(\mathbb{Z} / N \mathbb{Z})^{*}$ and $-I \in H$.
(i) Every $Q \in Y_{H}(K)$ is supported on some E / K (i.e. $\exists E / K$ and $\alpha: E[N] \xrightarrow{\cong}(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $Q=[(E, \alpha)]_{H}$.
(ii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, then $Q=[(E, \alpha)]_{H}$ such that E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation) then $[(E, \alpha)] \in Y_{H}(K)$ for a suitable α.
(iii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, and $Q=[(E, \alpha)]_{H}$ as above, then $Q=\left[\left(E^{\prime}, \alpha^{\prime}\right)\right]$ for any quadratic twist E^{\prime} / K defined over K, and for suitable α^{\prime}.

Theorem

Suppose $\operatorname{det}(H)=(\mathbb{Z} / N \mathbb{Z})^{*}$ and $-I \in H$.
(ii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, then $Q=[(E, \alpha)]_{H}$ such that E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation) then $[(E, \alpha)] \in Y_{H}(K)$ for a suitable α.

Some details for (ii). Note that $j(Q)=j(E)$. As this $\neq 0,1728$, the automorphism group $\operatorname{Aut}(E)=\{1,-1\}$. Thus $\phi_{\sigma}= \pm 1$ and in particular commutes with all other maps. But

$$
\alpha=h_{\sigma} \circ \alpha \circ \sigma^{-1} \circ \phi_{\sigma} \Longrightarrow \alpha \circ \sigma=\left(\phi_{\sigma} h_{\sigma}\right) \circ \alpha .
$$

This can be rewritten as

$$
\bar{\rho}_{E, N}(\sigma)=\phi_{\sigma} h_{\sigma}
$$

once we have taken $\alpha^{-1}(1,0), \alpha^{-1}(0,1)$ as basis for $E[N]$. Note that $\phi_{\sigma} h_{\sigma}= \pm h_{\sigma} \in H$. Thus $\bar{\rho}_{E, N}\left(G_{K}\right) \subseteq H$ as required.

The case $-l \notin H$

Theorem

Suppose $\operatorname{det}(H)=(\mathbb{Z} / N \mathbb{Z})^{*}$ and $-I \notin H$.
(i) Every $Q \in Y_{H}(K)$ is supported on some E / K (i.e. $\exists E / K$ and $\alpha: E[N] \xrightarrow{\cong}(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $Q=[(E, \alpha)]_{H}$.
(ii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, then $Q=[(E, \alpha)]_{H}$ such that E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation) then $[(E, \alpha)] \in Y_{H}(K)$ for a suitable α.
(iii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, and $Q=[(E, \alpha)]_{H}$ as above, then E is unique.

Theorem

Suppose $\operatorname{det}(H)=(\mathbb{Z} / N \mathbb{Z})^{*}$ and $-I \notin H$.
(ii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, then $Q=[(E, \alpha)]_{H}$ such that E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$ (up to conjugation) then $[(E, \alpha)] \in Y_{H}(K)$ for a suitable α.
(iii) If $Q \in Y_{H}(K)$ and $j(Q) \neq 0,1728$, and $Q=[(E, \alpha)]_{H}$ as above, then E is unique.

Some details. As before $\phi_{\sigma} \in\{ \pm 1\}$ and $\bar{\rho}_{E, N}(\sigma)=\phi_{\sigma} h_{\sigma}$. The map $\psi: \sigma \mapsto \phi_{\sigma}$ is a quadratic character.

If ψ is trivial then $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$. Otherwise ψ is a quadratic character, and by Galois theory its kernel fixes a quadratic extension $K(\sqrt{d})$ of K.

Now $\bar{\rho}_{E_{d}, N}=\psi \cdot \bar{\rho}_{E, N}$, and thus $\bar{\rho}_{E_{d}, N}(\sigma)=h_{\sigma} \in H$.
Replacing E by E_{d} and adjusting the level structure α gives $Q=[(E, \alpha)]_{H}$ with E defined over K and $\bar{\rho}_{E, N}\left(G_{K}\right) \subset H$.

